
Blind Encrypted Data Matching
— Demonstration Zero

WWN Software LLC pbaker@wwnsoftware.com

Blind Encrypted Data Matching
— Demonstration Zero

Table of Contents

Purpose 2
General Plan for Demonstration Zero 2
Demonstration Data 4
Demonstration Roles and Display Screens 5

Operations Manager 5
Blue and Green Teams 5
Blind Agent Negotiator - BAN 6

Code Packages Showcased in the Demonstration 9
Executable Programs 9
Cryptography 9
State Machines 10
XML Configuration 13
Matching Process 13

Additional Documentation 14
Notes 15

BEDM — Demonstration Zero

Draft June 21, 2010 1

Purpose
The software for blind encrypted data matching (BEDM) has been tested in a variety of
ways; however, many potential users have mentioned a desire to see the software
operating in an exceptionally simple, context-free demonstration that uses generic
textual data from the Internet and focuses all the attention on the unique aspects of the
BEDM method. The technology used in a simple demonstration can be easily evaluated
because there is no need to consider a social, economic, or political context. In this
document, we present just such a simple demonstration, which we call Demonstration
Zero.

Demonstration zero is context-free meaning that:

• there is no application domain

• there is no representation of geographic, security, or political boundaries in the
enterprise data system

• there is no commitment to a specific enterprise architecture

• there are no special software technologies other than the essential and distinctive
procedures provided by the BEDM software

The demonstration does require, however, Java Standard Edition 6.0; but that
requirement is easily satisfied by a variety of host computer systems.

In this document, we discuss the data, the matching method and the operation of the
demonstration. These topic should be accessible to all readers. Then we describe the
specific software modules that are tested by the demonstration. The detailed discussion
later in this document will be more interesting to software developers and system
engineers.

General Plan for Demonstration Zero
BEDM is a method that allows different people or agencies to work on matching data in
encrypted form so that each party’s security requirements are met. The demonstration
needs to show multiple parties. In this demonstration there are four parties playing four
roles.

BEDM — Demonstration Zero

Draft June 21, 2010 2

First, there is the person in an administrative role who starts and stops the
demonstration and opens various window displays to show the internal operation of
BEDM. In a real system, administration of the operation is a more complex job. Also,
note that in a real system, no person can inspect all parts of the system from one
location. All parts of Demonstration Zero run on one computer with no security wall
between the parts. Thus, we compromise the overall security that would be essential for
an operational system but we gain the ability to look over all the internal steps during
the demonstration.

Moving on to the important functional roles, we have two parties who hold secret data
that each must protect. We call these the Blue Team and the Green Team for the purpose
of the demonstration.

Finally, the Blue Team and Green Team need an independent agent to match encrypted
data for them. That party is called the Blind Agent Negotiator (BAN).

The presumed backstory for the demonstration is that the Blue Team and Green Team
work separately, they do not trust each other, and they have not been cooperating. Each
possesses documents that may relate to documents held by the other Team. Both teams
would benefit if they exchanged related documents but both teams see a security or
mission risk if they freely exchange all the documents. Thus, they have a motive to
employ the services of the BAN to match encrypted documents and identify those that
are related.

In this demonstration, the BAN does not see the actual document text, even in
encrypted form. Instead, the BAN must identify related documents by examining
encrypted word counts derived from the documents. After a match of related
documents has been found, the actual exchange of secure documents must be handled
through other channels. It would have been easy for the BAN to receive encrypted
documents and provide the matching ones to the Blue and Green Team. We did not
configure this demonstration for that option because we wished to show the most
conservative, most secure policy for BEDM operation.

BEDM — Demonstration Zero

Draft June 21, 2010 3

Demonstration Data
We use text documents for this demonstration and show the BEDM software in an
operation that matches related documents using only encrypted information. Our
method for matching is a simple formula based on word counts in the documents.
Documents that use similar, distinctive words are regarded as related. Of course, an
effort is made to avoid an influence from common words like “a” or “the” which appear
in all English documents.

Our documents were obtained from the public domain of old documents that are not
subject to any copyright restriction. There were downloaded over the Internet from the
site authorama.com. Each document is an essay written by the same author, Francis
Bacon, in the 17th century. There are 59 such essays and we have handled them in a way
that splits the collected essays into 59 distinct essays for the Green Team and a different
set of 59 distinct essays for the Blue Team. The story line for the demonstration is that
the Blue Team and the Green Team receive fragmentary information about a subject and
the only way either Team can put together all the information and read the full essay is
by finding the missing related information in the other Team’s possession.

To create this initial distribution of secret data, we took each essay and divided the text
into blocks of 50 words. Even numbered blocks went into one new, abridged essay and
the odd numbers went into a separate abridged essay. Each team received half the word
blocks in the original essay.

While we preprocessed each essay into two distinct abridged essays, we also formated
the documents for XML data exchange. Formatting is simple. There is a body containing
the text and a title. In addition, we calculated word counts for the text body and placed
the word counts in the XML document. At the end of the preprocessing, each Team has
XML information for 59 essays and the associated word counts. That information is the
starting point for the demonstration.

BEDM — Demonstration Zero

Draft June 21, 2010 4

Demonstration Roles and Display Screens

Operations Manager
In the demonstration, the whole operation is supervised by a computer user who runs
the demonstration. The software provides a control panel that contains buttons to
initiate three operations as shown in the following:

Blue and Green Teams
The two teams manage the data that they have acquired and protect from outside
access. For the demonstration, the data holdings are static; although, the holdings
would grow in any real-world operation. For each team, there is an independent
software object that runs in response to encrypted messages from the other agents in the
demonstration. This software object is visible on the demonstration screen as a window
that shows the status, the processing activity, and the data documents for the Team. The
following picture shows the window for the Blue Team:

BEDM — Demonstration Zero

Draft June 21, 2010 5

The window for the Green Team is identical except for the obvious changes to the name
and color of the panel. Each of these Team windows has a tabbed text area that can
show: Console (progress messages from the software), Secret Data (the secure hidden
data that the Team has acquired), Encrypted Data (the same secure data after encryption
by the session key), Match Results (encrypted) (the match results from the BAN protected
by the session key), and finally Match Results (clear) (the match results from the BAN in
clear text. Note that the window cannot show the data after it has been encrypted by all
three keys because such data resides in a block, binary format.

The line above the tab bar is the status and progress line. It will always show the current
status of the team during the matching session. While the team’s software is actually
processing data, the area changes to a progress bar.

Blind Agent Negotiator - BAN
The BAN plays the role of the middleman in the BEDM process. It is implemented by a
software object that runs in response to encrypted event messages and it is visible in the
demonstration through its software window. Below, we show a snapshot of the BAN’s
window taken after the conclusion of the matching process. The text area shows part of
the match results to illustrate that the result of the match is written in well-formed XML
with encrypted fields protected by the session key.

When the match is finished, a new button appears at the bottom of the window: Display
Similarity Matches. The button is not visible at other times because the information is
transient and it is not available before completion or after a “Reset” or “Exit”. The full
output of the matching operation is held temporarily as part of the demonstration.

BEDM — Demonstration Zero

Draft June 21, 2010 6

We need to jump ahead for the moment in order to indicate what this button actually
does. During the matching, the BAN compares each encrypted document from the
Green Team with each encrypted document from the Blue Team. The BAN calculates a
similarity index for each pair of documents. The BAN selects the 5 most similar
documents and notifies the Blue and Green team about those pairs of similar
documents. Meanwhile, the BAN is still holding all the similarity comparisons between
documents. When you push the “Display Similarity Matches” on the BAN window, the
software uses the temporary comparison data to display the full results. The following
window illustrates the display:

BEDM — Demonstration Zero

Draft June 21, 2010 7

The visual display shows a matrix of values where the documents from one team are
arranged along the horizontal axis and the documents from the other team are arranged
along the vertical. Each color square in the picture represents one comparison. The color
depends on the similarity of the two documents. The brighter the green, the stronger the
similarity. The computer marks the five most similar documents by shifting the color
from green to yellow.

BEDM — Demonstration Zero

Draft June 21, 2010 8

Code Packages Showcased in the Demonstration
The figure to the right shows the hierarchy of
Java packages in the software code tree as of
May 2010. (Note, there is now a single zone
package as of 2012.)

Executable Programs
The actual demonstration is an executable
program called DemoZero found in the
pygar.demo0 package. The same package also
contains a program PrepareNegoiationFromText
that is used to convert the text document from
the Internet into the XML text documents that
are the secret data for the demonstration.

Cryptography
Another package of interest is the pygar.cryptography package. It defines our simplified
API (application program interface) that exercises the Java SE 6.0 cryptographic
features. It is important to note that SE 6.0 ships with civilian grade cryptographic
capabilities and those are the ones used in the demonstration. However, the SE 6.0
software will automatically use the best cryptographic algorithm available on the
machine where it is running. That means that government and military applications can
use restricted, advanced cryptographic algorithms. However, the Java convention for
applying the best algorithm must be replaced in production system. For BEDM to work,
all the parties must use the same advance cryptographic algorithm. Thus, the
production version will specify which algorithm to use for each matching session. As a
result of this policy shift, two agencies may decide not to start a session because one of
the parties in the session cannot match the minimum strength of algorithm required by
the other parties. It is unlikely that this will cause any practical problem; except perhaps
for international operations.

The BEDM encryption process is broken up into software functions that are distributed
in Zones. A zone is a boundary in the software defined by a package. Thus, this

BEDM — Demonstration Zero

Draft June 21, 2010 9

demonstration has adopted three zones represented in packages: zone3, zone6 and
zone10. In principle, a production system could use the zones and allocate the zone
packages to physical hardware machines in different cyber-security zones. Thus the
most sensitive software appears in zone10 which should be allocated to hardware
running behind many firewalls and physical security defenses. The three zone system
that was adopted for the demonstration is configured like an onion or set of nested
boxes. The outer layer of the onion (zone3) is closest to the Internet and contains the
least sensitive information. The deepest zone (zone10) is the furthest away from
intrusion.

It is not our plan to continue the same 3 zone system in the next release of the software.
In view of our recent experience with the software and some additional thought on the
matter, the future zones will reflect where the various cryptographic keys are used. In
the future, the least secure zone will have access only to the public-key identity-
certificates. Middle zones will have access in addition to the private-key identity of the
local party. The innermost zone will have access to the critical session key that protects
the secret data when it moves outside the most secure zone.

State Machines
The package pygar.state provides a general utility for defining software behavior
through state transition diagrams. The state machine transitions are defined by the
software for each role in the demonstration. However, we can give a general description
for the state machines here.

State Transitions of the Blue and Green Teams

Each team is capable of preparing data for the sharing operation. Each team responds to
a reset command (Event_Reset) by the Operations Manager and goes into two parallel
wait states: Wait_Init and Wait_Start. These states wait for events Event_Init and
Event_Start, respectively. Eventually, the teams will wait in a single, non-parallel state
for Event_Match_Finished.

The sequence following Event_Init is:

• Event_Init

BEDM — Demonstration Zero

Draft June 21, 2010 10

• Create session key

• Send it securely to all parties, including self

• Send Event_Start to all parties, including self, as well as the Coach.

Likewise the sequence following Event_Start is:

• Event_Start

• Protect information that should be matched using 3-key encryption process
comprising the session key, the Blind Coach’s public asymmetric-encryption key,
and own private key digital signature.

• Send protected information as Event_Data.

• Wait Event_Match_Finished from the Coach.

Finally, the team receives the results of the match with the Event_Match_Finished event:

• Event_Match_Finished

• Get encrypted results

• Extract results from encrypted document

• Wait for next Event_Reset.

State Transitions of the BAN

The BAN responds to Event_Start by waiting for all the data from all the parties:

• Event_Start

• Wait for Event_Data from both of the two teams

• Remove effect of two encryption keys from the documents (session key not
available to the Coach)

• Compare encrypted documents and compile encrypted results

• Return encrypted results to each team protecting the each document with intended
recipients public key and signing it with own private key.

• Wait for next Event_Reset.

BEDM — Demonstration Zero

Draft June 21, 2010 11

Current State Machine Diagrams

DataReady

BAN State Transitions

Start

s0

sWaitStart

sEnd

Reset

NPosition

s0

sWaitStart

sWaitResults

sEnd

SKey

Reset

Start

MatchResult

Team Manager State

Transitions

InitSession

BEDM — Demonstration Zero

Draft June 21, 2010 12

Exact Information on State Transitions

The preceding description of the state machine software is reasonably current.
However, the software itself is the authoritative source for the state transition diagram
of the demonstration. In operation, each team member as well as the BAN operates a
state machine that governs its actions. Each of the three entities establishes the state
machine at startup using the function:

_initStateMachine().

A function with this name is found in classes pygar.demo0.TeamMember and
pygar.demo0.BAN. Of course, the content of the function is different for a TeamMember
and a BAN.

XML Configuration
Because BEDM works with XML based information, it is essential to tell the BEDM
software what it should do to protect the XML fields. You can configure the software so
that any field that is not especially mentioned in the setup instructions will be removed
and never shown during the encryption and matching process.

The XML configuration in Demonstration Zero is written down in the initFieldTable()
function of the main class pygar.demo0.ProfileDemo0. To understand the configuration
statements be sure to check the documentation for the
pygar.documents.EncryptedFieldTable class and the enumeration
EncryptedFieldTable.EFTYPE. The documentation for the enumeration has a detailed
discussion of how the XML fields are handled. To inspect the documentation for Java
classes and types, see the instructions in the section “Additional Documentation” below.

Matching Process
The matching is performed in the class pygar.demo0.CompareFiles. The match takes the
pairs of documents with the best word correlation function X(d1,d2) where X is the
correlation function of document d1 and document d2. The function for X is called
xcorrelate and it is found in the class just cited. It is not a true statistical correlation
function but a close relative defined as follows:

BEDM — Demonstration Zero

Draft June 21, 2010 13

• Let f(w,d) be the frequency of word w in document d where word frequency in a
document is the number of times the word appears in the document divided by the
number of words in the document.

• Let F(w) be the ensemble average frequency of word w where the ensemble average
frequency is the number of times the word appears in all documents divided by the
number of words in all documents.

• Let f’(w,d) be the normalized frequency of word w in document d computed as
f’(w,d) = f(w,d)/F(w).

• Let W(d) be the set of words found in document d whilst W(d1,d2) is the set of words
found in both documents d1 and d2 (the set intersection of W(d1) and W(d2)).

• The correlation X of documents d1 and d2 is X(d1,d2) and is computed as the sum of
products f’(w,d1) * f’(w,d2) for all w in W(d1,d2).

The matching function will identify documents that are similar based on the occurrence
of certain topic words in each. It is a simple function that works sufficiently for
demonstration. It is not recommended for practical document analysis because it misses
subjects that are uniquely characterized by word phrases rather than single words.
Secondly, it is weak in the area of the subject essays by Sir Francis Bacon because the
writer is allegorical in many parts and often cleverly ties many thoughts to a single
theme diluting the statistical contribution of words from the unifying theme.

Additional Documentation
The software has internal documentation some of which is extracted and formatted for
a Java design document (javadoc). This document is formated for viewing in a web
browser and the document for demo0 can be viewed at our web site at URL:
www.wwnsoftware.com/javadoc.

There are technical matters that pertain to the BEDM software modules that are
common not only to this demonstration but also to the production systems. Such
matters are described in a separate document entitled: Design Notes for the Pygar Project.
Note that the Pygar Project refers to the software development project launched by
WWN Software to build software for BEDM. In addition, see also Implementation Notes
for the Pygar Project.

BEDM — Demonstration Zero

Draft June 21, 2010 14

Notes

Installation and Operation of the Software

The software is distributed as a Java Archive or JAR file. Installation begins by copying
the JAR file to a directory where the software should reside. At this point, the run-time
software itself is fully installed because it will run directly from the JAR file. On the
other hand, you must provide a set of files and directories for the configuration
information and data. At this point, the missing files and directories are inside the JAR
file. The next step is to move them outside with the following command:

jar -xf demo0.jar demo0

The result of this command is that a new directory named “demo0” appears in the file
system and contains data and configuration files. For convenience, the data files that are
distributed in the JAR file are a snapshot after a demonstration has run. That means that
all the results from the previous run are contained in the JAR file and distributed with
the demonstration. The idea behind this is that you might want a copy of the results to
examine before you erase them and try to repeat the run on a new system.

Additional names could be added at the end as shown here:

jar -xf demo0.jar demo0 run runSL src

However, you may not want “run” or “runSL” and the “src” may not be present in the
JAR file. If we included the Java source code, the “src” symbol extracts a copy of the
Java source code and places it in the like named directory.

The “run” and “runSL” files are shell scripts that can start the software on any
computer that understands Unix command language. These computers include Unix,
Linux, and Macintosh machines. We have tested the software on Macintosh and
Windows XP PC’s. The latter do not understand shell scripts natively so we consider
them separately below.

The shell commands run in a standard command window. On most Unix systems there
is a command window named “xterm” and on Macintosh there is the “Terminal”

BEDM — Demonstration Zero

Draft June 21, 2010 15

program in the Utilities folder. The PC command window is called Console and it is
found under Accessories.

The “run” command is suitable for a system that has Java SE 6.0 installed but SE 6.0 is
not the default. It contains settings that use SE 6.0 for the demonstration. The “runSL”
command is a simplified version of the script for systems such as the latest “Snow
Leopard” Macintoshes that use SE 6.0 by default. In any case, however, two steps are
needed to complete the installation. First, the script must be edited to show the correct
path to the data. We recommend using a full path. A relative path causes problems with
the current version of the software. Second, enable the script for execution by the
following command:

chmod a+x run

In any case, once the script has been properly prepared, you run the script from the
command line as follows:

./run

On a PC, the scripts do not work unless you have installed an emulator, e.g. the MKS
Toolkit. We will assume that this is not the case. Luckily, Java SE 6.0 will likely be the
default on your PC. If it is not, you should download and install it from www.java.com.
You can check the default version by running the command:

java -version

If the version says “1.6”, then you have SE 6. Finally you can run the demonstration by
changing the directory of the console window to the directory where you copied the
JAR file. Then type the command:

java -cp demo0.jar pygar.demo0.DemoZero datadirpath

where datadirpath is set equal to the full path of the demo0 data directory that you
extracted from the JAR file earlier.

BEDM — Demonstration Zero

Draft June 21, 2010 16

http://www.java.com
http://www.java.com

After a delay, the four screens of the demonstration should appear.

Dedication of the Essays

The documents used to demonstrate encrypted matching were written in the 17th
century and have long since passed into the public domain. Nevertheless, authors
should have some rights and privileges in perpetuity; therefore, I feel it fitting to copy
the dedication of the documents as written by Francis Bacon to afford him a voice in the
present day and to acknowledge his source of research funding.

The Right Honorable
My Very Good Lord
the Duke of Buckingham
His Grace, Lord
High Admiral of England
Excellent Lord:

SALOMON saies; A good Name is as a precious oyntment; And I assure my selfe, such wil your Graces Name bee, with
Posteritie. For your Fortune, and Merit both, have been Eminent. And you have planted Things, that are like to last. I doe
now publish my Essayes; which, of all my other workes, have beene most Currant: For that, as it seemes, they come
home, to Mens Businesse, and Bosomes. I have enlarged them, both in Number, and Weight; So that they are indeed a
New Worke. I thought it therefore agreeable, to my Affection, and Obligation to your Grace, to prefix your Name before
them, both in English, and in Latine. For I doe conceive, that the Latine Volume of them, (being in the Universall Lan-
guage) may last, as long as Bookes last. My Instauration, I dedicated to the King: My Historie of Henry the Seventh,
(which I have now also translated into Latine) and my Portions of Naturall History, to the Prince: And these I dedicate to
your Grace; Being of the best Fruits, that by the good Encrease, which God gives to my Pen and Labours, I could yeeld.
God leade your Grace by the Hand. Your Graces most Obliged and faithfull Servant,
Fr. Sr. Alban

The modern reader will perhaps note that Bacon proposes an alternative to XML coding
to preserve information for future systems.

BEDM — Demonstration Zero

Draft June 21, 2010 17

